centroidal_control_collection
|
DDP problem of centroidal model with single rigid-body dynamics (SRBD) approximation. More...
#include <DdpSingleRigidBody.h>
Public Member Functions | |
EIGEN_MAKE_ALIGNED_OPERATOR_NEW | DdpProblem (double horizon_dt, double mass, const WeightParam &weight_param) |
Constructor. More... | |
void | setMotionParamFunc (const std::function< MotionParam(double)> &motion_param_func) |
Set function of motion parameter. More... | |
void | setRefDataFunc (const std::function< RefData(double)> &ref_data_func) |
Set function of reference data. More... | |
virtual int | inputDim (double t) const override |
Gets the input dimension. More... | |
virtual StateDimVector | stateEq (double t, const StateDimVector &x, const InputDimVector &u) const override |
Calculate discrete state equation. More... | |
virtual double | runningCost (double t, const StateDimVector &x, const InputDimVector &u) const override |
Calculate running cost. More... | |
virtual double | terminalCost (double t, const StateDimVector &x) const override |
Calculate terminal cost. More... | |
virtual void | calcStateEqDeriv (double t, const StateDimVector &x, const InputDimVector &u, Eigen::Ref< StateStateDimMatrix > state_eq_deriv_x, Eigen::Ref< StateInputDimMatrix > state_eq_deriv_u) const override |
Calculate first-order derivatives of discrete state equation. More... | |
virtual void | calcStateEqDeriv (double, const StateDimVector &, const InputDimVector &, Eigen::Ref< StateStateDimMatrix >, Eigen::Ref< StateInputDimMatrix >, std::vector< StateStateDimMatrix > &, std::vector< InputInputDimMatrix > &, std::vector< StateInputDimMatrix > &) const override |
Calculate first-order and second-order derivatives of discrete state equation. More... | |
virtual void | calcRunningCostDeriv (double t, const StateDimVector &x, const InputDimVector &u, Eigen::Ref< StateDimVector > running_cost_deriv_x, Eigen::Ref< InputDimVector > running_cost_deriv_u) const override |
Calculate first-order derivatives of running cost. More... | |
virtual void | calcRunningCostDeriv (double t, const StateDimVector &x, const InputDimVector &u, Eigen::Ref< StateDimVector > running_cost_deriv_x, Eigen::Ref< InputDimVector > running_cost_deriv_u, Eigen::Ref< StateStateDimMatrix > running_cost_deriv_xx, Eigen::Ref< InputInputDimMatrix > running_cost_deriv_uu, Eigen::Ref< StateInputDimMatrix > running_cost_deriv_xu) const override |
Calculate first-order and second-order derivatives of running cost. More... | |
virtual void | calcTerminalCostDeriv (double t, const StateDimVector &x, Eigen::Ref< StateDimVector > terminal_cost_deriv_x) const override |
Calculate first-order derivatives of terminal cost. More... | |
virtual void | calcTerminalCostDeriv (double t, const StateDimVector &x, Eigen::Ref< StateDimVector > terminal_cost_deriv_x, Eigen::Ref< StateStateDimMatrix > terminal_cost_deriv_xx) const override |
Calculate first-order and second-order derivatives of terminal cost. More... | |
Public Attributes | |
double | mass_ = 0 |
Robot mass [Kg]. More... | |
Protected Attributes | |
WeightParam | weight_param_ |
Weight parameter. More... | |
std::function< MotionParam(double)> | motion_param_func_ |
Function of motion parameter. More... | |
std::function< RefData(double)> | ref_data_func_ |
Function of reference data. More... | |
DDP problem of centroidal model with single rigid-body dynamics (SRBD) approximation.
See stateEq for the state equation of this problem.
Definition at line 110 of file DdpSingleRigidBody.h.
|
inline |
Constructor.
horizon_dt | discretization timestep in horizon [sec] |
mass | robot mass [Kg] |
weight_param | objective weight parameter |
Definition at line 120 of file DdpSingleRigidBody.h.
|
overridevirtual |
Calculate first-order derivatives of running cost.
t | time [sec] |
x | state |
u | input |
running_cost_deriv_x | first-order derivative of running cost w.r.t. state |
running_cost_deriv_u | first-order derivative of running cost w.r.t. input |
|
overridevirtual |
Calculate first-order and second-order derivatives of running cost.
t | time [sec] |
x | state |
u | input |
running_cost_deriv_x | first-order derivative of running cost w.r.t. state |
running_cost_deriv_u | first-order derivative of running cost w.r.t. input |
running_cost_deriv_xx | second-order derivative of running cost w.r.t. state |
running_cost_deriv_uu | second-order derivative of running cost w.r.t. input |
running_cost_deriv_xu | second-order derivative of running cost w.r.t. state and input |
|
overridevirtual |
Calculate first-order derivatives of discrete state equation.
t | time [sec] |
x | state |
u | input |
state_eq_deriv_x | first-order derivative of state equation w.r.t. state |
state_eq_deriv_u | first-order derivative of state equation w.r.t. input |
The first-order derivative of the discrete state equation is expressed as follows.
\begin{align*} \frac{\partial \boldsymbol{x}_{k+1}}{\partial \boldsymbol{x}_k} &= \begin{bmatrix} \boldsymbol{O} & \boldsymbol{O} & \boldsymbol{E} & \boldsymbol{O} \\ \boldsymbol{O} & \dfrac{\partial \boldsymbol{\dot{\alpha}}}{\partial \boldsymbol{\alpha}} & \boldsymbol{O} & \boldsymbol{K}_{\mathit{Euler}} \\ \boldsymbol{O} & \boldsymbol{O} & \boldsymbol{O} & \boldsymbol{O} \\ \boldsymbol{I}^{-1} (\sum_i \lambda_i \boldsymbol{\rho}_i) \times & \boldsymbol{O} & \boldsymbol{O} & \dfrac{\partial \boldsymbol{\dot{\omega}}}{\partial \boldsymbol{\omega}} \end{bmatrix} \Delta t + \boldsymbol{I} \\ \frac{\partial \boldsymbol{x}_{k+1}}{\partial \boldsymbol{u}_k} &= \begin{bmatrix} \cdots & \boldsymbol{O} & \cdots \\ \cdots & \boldsymbol{O} & \cdots \\ \cdots & \dfrac{1}{m} \boldsymbol{\rho}_i & \cdots \\ \cdots & \boldsymbol{I}^{-1} (\boldsymbol{p}_i - \boldsymbol{c}) \times \boldsymbol{\rho}_i & \cdots \end{bmatrix} \Delta t \end{align*}
\(\boldsymbol{E}\) is the identity matrix. The formulas for \(\dfrac{\partial \boldsymbol{\dot{\alpha}}}{\partial \boldsymbol{\alpha}}\) and \(\dfrac{\partial \boldsymbol{\dot{\omega}}}{\partial \boldsymbol{\omega}}\) are complex, so they were derived using the symbolic mathematics library (SymPy).
|
inlineoverridevirtual |
Calculate first-order and second-order derivatives of discrete state equation.
t | time [sec] |
x | state |
u | input |
state_eq_deriv_x | first-order derivative of state equation w.r.t. state |
state_eq_deriv_u | first-order derivative of state equation w.r.t. input |
state_eq_deriv_xx | second-order derivative of state equation w.r.t. state |
state_eq_deriv_uu | second-order derivative of state equation w.r.t. input |
state_eq_deriv_xu | second-order derivative of state equation w.r.t. state and input |
Definition at line 254 of file DdpSingleRigidBody.h.
|
overridevirtual |
Calculate first-order derivatives of terminal cost.
t | time [sec] |
x | state |
terminal_cost_deriv_x | first-order derivative of terminal cost w.r.t. state |
|
overridevirtual |
Calculate first-order and second-order derivatives of terminal cost.
t | time [sec] |
x | state |
terminal_cost_deriv_x | first-order derivative of terminal cost w.r.t. state |
terminal_cost_deriv_xx | second-order derivative of terminal cost w.r.t. state |
|
overridevirtual |
Gets the input dimension.
t | time |
|
overridevirtual |
Calculate running cost.
t | time [sec] |
x | current state \(\boldsymbol{x}_k\) |
u | current input \(\boldsymbol{u}_k\) |
|
inline |
Set function of motion parameter.
motion_param_func | function of motion parameter |
Definition at line 128 of file DdpSingleRigidBody.h.
|
inline |
Set function of reference data.
ref_data_func | function of reference data |
Definition at line 136 of file DdpSingleRigidBody.h.
|
overridevirtual |
Calculate discrete state equation.
t | time [sec] |
x | current state \(\boldsymbol{x}_k\) |
u | current input \(\boldsymbol{u}_k\) |
Dynamics is expressed by the following equation.
\begin{align*} m \boldsymbol{\ddot{c}} &= \sum_i \lambda_i \boldsymbol{\rho}_i - m \boldsymbol{g} \\ \boldsymbol{I} \boldsymbol{\dot{\omega}} + \boldsymbol{\omega} \times \boldsymbol{I} \boldsymbol{\omega} &= \sum_i (\boldsymbol{p}_i - \boldsymbol{c}) \times \lambda_i \boldsymbol{\rho}_i \end{align*}
This can be represented as a nonlinear system as follows.
\begin{align*} \boldsymbol{\dot{x}} &= \begin{bmatrix} \boldsymbol{v} \\ \boldsymbol{K}_{\mathit{Euler}}(\boldsymbol{\alpha}) \, \boldsymbol{\omega} \\ \dfrac{1}{m} \sum_i \lambda_i \boldsymbol{\rho}_i - \boldsymbol{g} \\ \boldsymbol{I}^{-1} \left( - \boldsymbol{\omega} \times \boldsymbol{I} \boldsymbol{\omega} + \sum_i (\boldsymbol{p}_i - \boldsymbol{c}) \times \lambda_i \boldsymbol{\rho}_i \right) \end{bmatrix} \end{align*}
State and control input are expressed by the following equations.
\begin{align*} \boldsymbol{x} = \begin{bmatrix} \boldsymbol{c} \\ \boldsymbol{\alpha} \\ \boldsymbol{v} \\ \boldsymbol{\omega} \end{bmatrix}, \boldsymbol{u} = \begin{bmatrix} \vdots \\ \lambda_i \\ \vdots \end{bmatrix} \end{align*}
\(m\) and \(\boldsymbol{I}\) are the robot mass and inertia matrix, respectively. \(\boldsymbol{c}\), \(\boldsymbol{v}\), \(\boldsymbol{\alpha}\), and \(\boldsymbol{\omega}\) are CoM position, CoM velocity, base link orientation, and base link angular velocity, respectively. Base link orientation is expressed in Euler angles. \(\boldsymbol{p}_i\), \(\lambda_i\), and \(\boldsymbol{\rho}_i\) are position, force scale, and ridge vector of i-th contact vertex ridge, respectively.
Euler method is used to discretize the system.
\begin{align*} \boldsymbol{x}_{k+1} = \boldsymbol{\dot{x}}_{k} \Delta t + \boldsymbol{x}_{k} \end{align*}
|
overridevirtual |
Calculate terminal cost.
t | time [sec] |
x | current state \(\boldsymbol{x}_k\) |
double CCC::DdpSingleRigidBody::DdpProblem::mass_ = 0 |
Robot mass [Kg].
Definition at line 321 of file DdpSingleRigidBody.h.
|
protected |
Function of motion parameter.
Definition at line 328 of file DdpSingleRigidBody.h.
|
protected |
Function of reference data.
Definition at line 331 of file DdpSingleRigidBody.h.
|
protected |
Weight parameter.
Definition at line 325 of file DdpSingleRigidBody.h.