centroidal_control_collection
Public Member Functions | Public Attributes | Protected Attributes | List of all members
CCC::DdpSingleRigidBody::DdpProblem Class Reference

DDP problem of centroidal model with single rigid-body dynamics (SRBD) approximation. More...

#include <DdpSingleRigidBody.h>

Inheritance diagram for CCC::DdpSingleRigidBody::DdpProblem:
Inheritance graph
[legend]
Collaboration diagram for CCC::DdpSingleRigidBody::DdpProblem:
Collaboration graph
[legend]

Public Member Functions

EIGEN_MAKE_ALIGNED_OPERATOR_NEW DdpProblem (double horizon_dt, double mass, const WeightParam &weight_param)
 Constructor. More...
 
void setMotionParamFunc (const std::function< MotionParam(double)> &motion_param_func)
 Set function of motion parameter. More...
 
void setRefDataFunc (const std::function< RefData(double)> &ref_data_func)
 Set function of reference data. More...
 
virtual int inputDim (double t) const override
 Gets the input dimension. More...
 
virtual StateDimVector stateEq (double t, const StateDimVector &x, const InputDimVector &u) const override
 Calculate discrete state equation. More...
 
virtual double runningCost (double t, const StateDimVector &x, const InputDimVector &u) const override
 Calculate running cost. More...
 
virtual double terminalCost (double t, const StateDimVector &x) const override
 Calculate terminal cost. More...
 
virtual void calcStateEqDeriv (double t, const StateDimVector &x, const InputDimVector &u, Eigen::Ref< StateStateDimMatrix > state_eq_deriv_x, Eigen::Ref< StateInputDimMatrix > state_eq_deriv_u) const override
 Calculate first-order derivatives of discrete state equation. More...
 
virtual void calcStateEqDeriv (double, const StateDimVector &, const InputDimVector &, Eigen::Ref< StateStateDimMatrix >, Eigen::Ref< StateInputDimMatrix >, std::vector< StateStateDimMatrix > &, std::vector< InputInputDimMatrix > &, std::vector< StateInputDimMatrix > &) const override
 Calculate first-order and second-order derivatives of discrete state equation. More...
 
virtual void calcRunningCostDeriv (double t, const StateDimVector &x, const InputDimVector &u, Eigen::Ref< StateDimVector > running_cost_deriv_x, Eigen::Ref< InputDimVector > running_cost_deriv_u) const override
 Calculate first-order derivatives of running cost. More...
 
virtual void calcRunningCostDeriv (double t, const StateDimVector &x, const InputDimVector &u, Eigen::Ref< StateDimVector > running_cost_deriv_x, Eigen::Ref< InputDimVector > running_cost_deriv_u, Eigen::Ref< StateStateDimMatrix > running_cost_deriv_xx, Eigen::Ref< InputInputDimMatrix > running_cost_deriv_uu, Eigen::Ref< StateInputDimMatrix > running_cost_deriv_xu) const override
 Calculate first-order and second-order derivatives of running cost. More...
 
virtual void calcTerminalCostDeriv (double t, const StateDimVector &x, Eigen::Ref< StateDimVector > terminal_cost_deriv_x) const override
 Calculate first-order derivatives of terminal cost. More...
 
virtual void calcTerminalCostDeriv (double t, const StateDimVector &x, Eigen::Ref< StateDimVector > terminal_cost_deriv_x, Eigen::Ref< StateStateDimMatrix > terminal_cost_deriv_xx) const override
 Calculate first-order and second-order derivatives of terminal cost. More...
 

Public Attributes

double mass_ = 0
 Robot mass [Kg]. More...
 

Protected Attributes

WeightParam weight_param_
 Weight parameter. More...
 
std::function< MotionParam(double)> motion_param_func_
 Function of motion parameter. More...
 
std::function< RefData(double)> ref_data_func_
 Function of reference data. More...
 

Detailed Description

DDP problem of centroidal model with single rigid-body dynamics (SRBD) approximation.

See stateEq for the state equation of this problem.

Definition at line 110 of file DdpSingleRigidBody.h.

Constructor & Destructor Documentation

◆ DdpProblem()

EIGEN_MAKE_ALIGNED_OPERATOR_NEW CCC::DdpSingleRigidBody::DdpProblem::DdpProblem ( double  horizon_dt,
double  mass,
const WeightParam weight_param 
)
inline

Constructor.

Parameters
horizon_dtdiscretization timestep in horizon [sec]
massrobot mass [Kg]
weight_paramobjective weight parameter

Definition at line 120 of file DdpSingleRigidBody.h.

Member Function Documentation

◆ calcRunningCostDeriv() [1/2]

virtual void CCC::DdpSingleRigidBody::DdpProblem::calcRunningCostDeriv ( double  t,
const StateDimVector &  x,
const InputDimVector &  u,
Eigen::Ref< StateDimVector >  running_cost_deriv_x,
Eigen::Ref< InputDimVector >  running_cost_deriv_u 
) const
overridevirtual

Calculate first-order derivatives of running cost.

Parameters
ttime [sec]
xstate
uinput
running_cost_deriv_xfirst-order derivative of running cost w.r.t. state
running_cost_deriv_ufirst-order derivative of running cost w.r.t. input

◆ calcRunningCostDeriv() [2/2]

virtual void CCC::DdpSingleRigidBody::DdpProblem::calcRunningCostDeriv ( double  t,
const StateDimVector &  x,
const InputDimVector &  u,
Eigen::Ref< StateDimVector >  running_cost_deriv_x,
Eigen::Ref< InputDimVector >  running_cost_deriv_u,
Eigen::Ref< StateStateDimMatrix >  running_cost_deriv_xx,
Eigen::Ref< InputInputDimMatrix >  running_cost_deriv_uu,
Eigen::Ref< StateInputDimMatrix >  running_cost_deriv_xu 
) const
overridevirtual

Calculate first-order and second-order derivatives of running cost.

Parameters
ttime [sec]
xstate
uinput
running_cost_deriv_xfirst-order derivative of running cost w.r.t. state
running_cost_deriv_ufirst-order derivative of running cost w.r.t. input
running_cost_deriv_xxsecond-order derivative of running cost w.r.t. state
running_cost_deriv_uusecond-order derivative of running cost w.r.t. input
running_cost_deriv_xusecond-order derivative of running cost w.r.t. state and input

◆ calcStateEqDeriv() [1/2]

virtual void CCC::DdpSingleRigidBody::DdpProblem::calcStateEqDeriv ( double  t,
const StateDimVector &  x,
const InputDimVector &  u,
Eigen::Ref< StateStateDimMatrix >  state_eq_deriv_x,
Eigen::Ref< StateInputDimMatrix >  state_eq_deriv_u 
) const
overridevirtual

Calculate first-order derivatives of discrete state equation.

Parameters
ttime [sec]
xstate
uinput
state_eq_deriv_xfirst-order derivative of state equation w.r.t. state
state_eq_deriv_ufirst-order derivative of state equation w.r.t. input

The first-order derivative of the discrete state equation is expressed as follows.

\begin{align*} \frac{\partial \boldsymbol{x}_{k+1}}{\partial \boldsymbol{x}_k} &= \begin{bmatrix} \boldsymbol{O} & \boldsymbol{O} & \boldsymbol{E} & \boldsymbol{O} \\ \boldsymbol{O} & \dfrac{\partial \boldsymbol{\dot{\alpha}}}{\partial \boldsymbol{\alpha}} & \boldsymbol{O} & \boldsymbol{K}_{\mathit{Euler}} \\ \boldsymbol{O} & \boldsymbol{O} & \boldsymbol{O} & \boldsymbol{O} \\ \boldsymbol{I}^{-1} (\sum_i \lambda_i \boldsymbol{\rho}_i) \times & \boldsymbol{O} & \boldsymbol{O} & \dfrac{\partial \boldsymbol{\dot{\omega}}}{\partial \boldsymbol{\omega}} \end{bmatrix} \Delta t + \boldsymbol{I} \\ \frac{\partial \boldsymbol{x}_{k+1}}{\partial \boldsymbol{u}_k} &= \begin{bmatrix} \cdots & \boldsymbol{O} & \cdots \\ \cdots & \boldsymbol{O} & \cdots \\ \cdots & \dfrac{1}{m} \boldsymbol{\rho}_i & \cdots \\ \cdots & \boldsymbol{I}^{-1} (\boldsymbol{p}_i - \boldsymbol{c}) \times \boldsymbol{\rho}_i & \cdots \end{bmatrix} \Delta t \end{align*}

\(\boldsymbol{E}\) is the identity matrix. The formulas for \(\dfrac{\partial \boldsymbol{\dot{\alpha}}}{\partial \boldsymbol{\alpha}}\) and \(\dfrac{\partial \boldsymbol{\dot{\omega}}}{\partial \boldsymbol{\omega}}\) are complex, so they were derived using the symbolic mathematics library (SymPy).

◆ calcStateEqDeriv() [2/2]

virtual void CCC::DdpSingleRigidBody::DdpProblem::calcStateEqDeriv ( double  ,
const StateDimVector &  ,
const InputDimVector &  ,
Eigen::Ref< StateStateDimMatrix >  ,
Eigen::Ref< StateInputDimMatrix >  ,
std::vector< StateStateDimMatrix > &  ,
std::vector< InputInputDimMatrix > &  ,
std::vector< StateInputDimMatrix > &   
) const
inlineoverridevirtual

Calculate first-order and second-order derivatives of discrete state equation.

Parameters
ttime [sec]
xstate
uinput
state_eq_deriv_xfirst-order derivative of state equation w.r.t. state
state_eq_deriv_ufirst-order derivative of state equation w.r.t. input
state_eq_deriv_xxsecond-order derivative of state equation w.r.t. state
state_eq_deriv_uusecond-order derivative of state equation w.r.t. input
state_eq_deriv_xusecond-order derivative of state equation w.r.t. state and input

Definition at line 254 of file DdpSingleRigidBody.h.

◆ calcTerminalCostDeriv() [1/2]

virtual void CCC::DdpSingleRigidBody::DdpProblem::calcTerminalCostDeriv ( double  t,
const StateDimVector &  x,
Eigen::Ref< StateDimVector >  terminal_cost_deriv_x 
) const
overridevirtual

Calculate first-order derivatives of terminal cost.

Parameters
ttime [sec]
xstate
terminal_cost_deriv_xfirst-order derivative of terminal cost w.r.t. state

◆ calcTerminalCostDeriv() [2/2]

virtual void CCC::DdpSingleRigidBody::DdpProblem::calcTerminalCostDeriv ( double  t,
const StateDimVector &  x,
Eigen::Ref< StateDimVector >  terminal_cost_deriv_x,
Eigen::Ref< StateStateDimMatrix >  terminal_cost_deriv_xx 
) const
overridevirtual

Calculate first-order and second-order derivatives of terminal cost.

Parameters
ttime [sec]
xstate
terminal_cost_deriv_xfirst-order derivative of terminal cost w.r.t. state
terminal_cost_deriv_xxsecond-order derivative of terminal cost w.r.t. state

◆ inputDim()

virtual int CCC::DdpSingleRigidBody::DdpProblem::inputDim ( double  t) const
overridevirtual

Gets the input dimension.

Parameters
ttime

◆ runningCost()

virtual double CCC::DdpSingleRigidBody::DdpProblem::runningCost ( double  t,
const StateDimVector &  x,
const InputDimVector &  u 
) const
overridevirtual

Calculate running cost.

Parameters
ttime [sec]
xcurrent state \(\boldsymbol{x}_k\)
ucurrent input \(\boldsymbol{u}_k\)
Returns
running cost \(L_k\)

◆ setMotionParamFunc()

void CCC::DdpSingleRigidBody::DdpProblem::setMotionParamFunc ( const std::function< MotionParam(double)> &  motion_param_func)
inline

Set function of motion parameter.

Parameters
motion_param_funcfunction of motion parameter

Definition at line 128 of file DdpSingleRigidBody.h.

◆ setRefDataFunc()

void CCC::DdpSingleRigidBody::DdpProblem::setRefDataFunc ( const std::function< RefData(double)> &  ref_data_func)
inline

Set function of reference data.

Parameters
ref_data_funcfunction of reference data

Definition at line 136 of file DdpSingleRigidBody.h.

◆ stateEq()

virtual StateDimVector CCC::DdpSingleRigidBody::DdpProblem::stateEq ( double  t,
const StateDimVector &  x,
const InputDimVector &  u 
) const
overridevirtual

Calculate discrete state equation.

Parameters
ttime [sec]
xcurrent state \(\boldsymbol{x}_k\)
ucurrent input \(\boldsymbol{u}_k\)
Returns
next state \(\boldsymbol{x}_{k+1}\)

Dynamics is expressed by the following equation.

\begin{align*} m \boldsymbol{\ddot{c}} &= \sum_i \lambda_i \boldsymbol{\rho}_i - m \boldsymbol{g} \\ \boldsymbol{I} \boldsymbol{\dot{\omega}} + \boldsymbol{\omega} \times \boldsymbol{I} \boldsymbol{\omega} &= \sum_i (\boldsymbol{p}_i - \boldsymbol{c}) \times \lambda_i \boldsymbol{\rho}_i \end{align*}

This can be represented as a nonlinear system as follows.

\begin{align*} \boldsymbol{\dot{x}} &= \begin{bmatrix} \boldsymbol{v} \\ \boldsymbol{K}_{\mathit{Euler}}(\boldsymbol{\alpha}) \, \boldsymbol{\omega} \\ \dfrac{1}{m} \sum_i \lambda_i \boldsymbol{\rho}_i - \boldsymbol{g} \\ \boldsymbol{I}^{-1} \left( - \boldsymbol{\omega} \times \boldsymbol{I} \boldsymbol{\omega} + \sum_i (\boldsymbol{p}_i - \boldsymbol{c}) \times \lambda_i \boldsymbol{\rho}_i \right) \end{bmatrix} \end{align*}

State and control input are expressed by the following equations.

\begin{align*} \boldsymbol{x} = \begin{bmatrix} \boldsymbol{c} \\ \boldsymbol{\alpha} \\ \boldsymbol{v} \\ \boldsymbol{\omega} \end{bmatrix}, \boldsymbol{u} = \begin{bmatrix} \vdots \\ \lambda_i \\ \vdots \end{bmatrix} \end{align*}

\(m\) and \(\boldsymbol{I}\) are the robot mass and inertia matrix, respectively. \(\boldsymbol{c}\), \(\boldsymbol{v}\), \(\boldsymbol{\alpha}\), and \(\boldsymbol{\omega}\) are CoM position, CoM velocity, base link orientation, and base link angular velocity, respectively. Base link orientation is expressed in Euler angles. \(\boldsymbol{p}_i\), \(\lambda_i\), and \(\boldsymbol{\rho}_i\) are position, force scale, and ridge vector of i-th contact vertex ridge, respectively.

Euler method is used to discretize the system.

\begin{align*} \boldsymbol{x}_{k+1} = \boldsymbol{\dot{x}}_{k} \Delta t + \boldsymbol{x}_{k} \end{align*}

◆ terminalCost()

virtual double CCC::DdpSingleRigidBody::DdpProblem::terminalCost ( double  t,
const StateDimVector &  x 
) const
overridevirtual

Calculate terminal cost.

Parameters
ttime [sec]
xcurrent state \(\boldsymbol{x}_k\)
Returns
terminal cost \(\phi_k\)

Member Data Documentation

◆ mass_

double CCC::DdpSingleRigidBody::DdpProblem::mass_ = 0

Robot mass [Kg].

Definition at line 321 of file DdpSingleRigidBody.h.

◆ motion_param_func_

std::function<MotionParam(double)> CCC::DdpSingleRigidBody::DdpProblem::motion_param_func_
protected

Function of motion parameter.

Definition at line 328 of file DdpSingleRigidBody.h.

◆ ref_data_func_

std::function<RefData(double)> CCC::DdpSingleRigidBody::DdpProblem::ref_data_func_
protected

Function of reference data.

Definition at line 331 of file DdpSingleRigidBody.h.

◆ weight_param_

WeightParam CCC::DdpSingleRigidBody::DdpProblem::weight_param_
protected

Weight parameter.

Definition at line 325 of file DdpSingleRigidBody.h.


The documentation for this class was generated from the following file: