nmpc_ddp
|
Solver for quadratic programming problems with box constraints (i.e., only upper and lower bounds). More...
#include <BoxQP.h>
Classes | |
struct | Configuration |
Configuration. More... | |
struct | TraceData |
Data to trace optimization loop. More... | |
Public Types | |
using | VarDimVector = Eigen::Matrix< double, VarDim, 1 > |
Type of vector of variables dimension. More... | |
using | VarVarDimMatrix = Eigen::Matrix< double, VarDim, VarDim > |
Type of matrix of variables x variables dimension. More... | |
using | VarDimArray = Eigen::Array< bool, VarDim, 1 > |
Type of boolean array of variables dimension. More... | |
Public Member Functions | |
EIGEN_MAKE_ALIGNED_OPERATOR_NEW | BoxQP (int var_dim=VarDim) |
Constructor. More... | |
VarDimVector | solve (const VarVarDimMatrix &H, const VarDimVector &g, const VarDimVector &lower, const VarDimVector &upper) |
Solve optimization. More... | |
VarDimVector | solve (const VarVarDimMatrix &H, const VarDimVector &g, const VarDimVector &lower, const VarDimVector &upper, const VarDimVector &initial_x) |
Solve optimization. More... | |
Configuration & | config () |
Accessor to configuration. More... | |
const Configuration & | config () const |
Const accessor to configuration. More... | |
const std::vector< TraceData > & | traceDataList () const |
Const accessor to trace data list. More... | |
Public Attributes | |
const int | var_dim_ = 0 |
Dimension of decision variables. More... | |
int | retval_ = 0 |
Return value. More... | |
const std::unordered_map< int, std::string > | retstr_ |
Return string. More... | |
std::unique_ptr< Eigen::LLT< Eigen::MatrixXd > > | llt_free_ |
Cholesky decomposition (LLT) of free block of objective Hessian matrix. More... | |
std::vector< int > | free_idxs_ |
Indices of free dimensions in decision variables. More... | |
Protected Attributes | |
Configuration | config_ |
Configuration. More... | |
std::vector< TraceData > | trace_data_list_ |
Sequence of trace data. More... | |
Solver for quadratic programming problems with box constraints (i.e., only upper and lower bounds).
VarDim | dimension of decision variables |
See the following for a detailed algorithm.
using nmpc_ddp::BoxQP< VarDim >::VarDimArray = Eigen::Array<bool, VarDim, 1> |
using nmpc_ddp::BoxQP< VarDim >::VarDimVector = Eigen::Matrix<double, VarDim, 1> |
using nmpc_ddp::BoxQP< VarDim >::VarVarDimMatrix = Eigen::Matrix<double, VarDim, VarDim> |
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
|
protected |
std::vector<int> nmpc_ddp::BoxQP< VarDim >::free_idxs_ |
std::unique_ptr<Eigen::LLT<Eigen::MatrixXd> > nmpc_ddp::BoxQP< VarDim >::llt_free_ |
const std::unordered_map<int, std::string> nmpc_ddp::BoxQP< VarDim >::retstr_ |
Return string.
int nmpc_ddp::BoxQP< VarDim >::retval_ = 0 |
|
protected |
const int nmpc_ddp::BoxQP< VarDim >::var_dim_ = 0 |